‘ ! ! . UCRL-CONF-208613

LAWRENCE
LIVERMORE
NATIONAL

oo | A NEW VISta In Scientific Data
Management

J. Keasler

December 15, 2004

Nuclear Explosives Code Developers' Conference
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Proceedings from the NECDC 2004

A New Vista in Scientific Data Management

Jeff Keasler

Lawrence Livermore National Laboratory, Liverma@alifornia, 94550

This paper examines the use of an in-core database in place of traditional
data structuresin two ASC codes. Results so far indicate a dramatic
reduction in code, coupled with an increase in functionality. Performance
impact has been around one percent for the majority of problems tested.
Debugging has been the major roadblock thus far, and a portable browser
tool has been written that will soon work with a variety of debuggers.

Introduction

Within the last ten years, many 2D physics code® feeen rewritten to work in 3D
geometries. In many cases, the rewrite has offiétkdin the way of new physics
capability, yet an enormous effort has been speritomputer science” issues. In
examining the old and new codes, there is ofterarfahdamental improvement in
software methodology. If “computer science” issaee costing us so much time in
development and getting in the way of our physioskwhow can we say fundamental
improvements in software design are not as impbttaaddress as the physics? This
paper examines how the use of database technadoglyadp increase the ratio of physics
to non-physics programming done during the codeldgwment process.

The idea of using an in-core data registry (cafledtabase in this paper) in scientific
software is not new. However, many data managesystems in the literature tend to
be ad hoc, hard to learn due to the size of thBi; Aard to use due to their conceptual
complexity, or they tend to have low performanteother cases, the overall
functionality provided by these systems is good iamgloving, but there are still barriers
to widespread usage.

The database described in this paper is called\W4sta is simple to learn, relatively
efficient, and easy to implement as a small library

The purpose of this paper is not to convince otherase Vista, but rather to get
people to examine their own software and evaldseptos and cons of using a database
in place of traditional data structures. While atatbase will not be appropriate for all
applications, it is appropriate for many sciencedoacodes, and its benefits are worth
exploring.

Keadler 1

Proceedings from the NECDC 2004

The Vista Database

Viesh
cycle
time

View (IndexSet) Elements Edge Nodes
Relation ElemToNode Position(2)
Field pressure thermodynamic Velocity(2)
Parameter volume thermodynamic
Attribute clengtt
|
| | | |
Concrete (pure) Concrete (mix) HE (pure) HE (mix) Advect HE
damage damage beta beta EdgeToElem Lighting time

pressure pressure flux
volume volume

Figure 1. Database diagram for the four finite elment, two dimensional mesh shown. The legend
below the mesh highlights Vista’'s key features. E& box in the data diagram represents a View.

At the core of Vista is a data structure calledieww A View encapsulates a subset
of a mesh (Fig. 1). Views can be arranged in paddierarchy to efficiently encapsulate
data. A View is defined to be an IndexSet and falvles:

e IndexSet — Contains identifiers for all mesh eesittontained in the View.

e Relation Table — Contains topological relationshyetween this View and
other Views.

e Field Table — Contains discrete Fields which hbokl bulk data for the View.
e Parameter Table — Contains Parameters which helddh-bulk View data.
e View Table — Contains child Views.

A Table is a container such as an array or a haslb.tA Vista Table is an extension
of a traditional key/value table in that each tadery has additional properties:

e Aliasing — The ability to use two or more keys ¢ber to the same value.
e Attributes — The ability to attach additional infieation to each table entry.
e Depth — The ability to manage multiple copies affetable entry.

Vista’s simple definition allows for a small andghly efficient implementation. Its
consistent structure allows the user to replaceymamte-force or cut-paste-modify
sections of code with a compact, consolidated dlgar Vista is not appropriate as a
replacement for all data structures, but is powenfd elegant where it can be leveraged.

Keadler 2

Proceedings from the NECDC 2004
C++ implementation of Vista
View rparties = et

mesh->viewCreate(“particles”,num);
| | | | particles->fieldCreateReal(“x”);

Elements Edges Nodes Particles | Particles->fieldCreateReal("y”);
X X particles->fieldCreateReal(“charge”);
y y
charge double *x = particles->fieldReal(“x");

double *y = particles->fieldReal("y");

Figure 2. This example demonstrates usage of a Cimplementation of the Vista database.

Although the Vista specification is language ndut@++ was chosen for the
reference implementation. Only the basic encapisuldeatures of C++ were used, and
care was taken to avoid constructs that could diice portability or performance
problems.

A C++ code sample is shown in Fig. 2. This codma creates “Mesh” and
“Particles” Views. The code required for the ti@aof the other Views is similar.

Note that character strings are used in the coddetaify database variables. Integer
tags could be used just as easily, and can be magplted much more efficiently.

In the code, the x coordinate field is retrievethgs particle->fieldReal(“x”)". This
syntax is similar to a C language struct membesregice, "particle->x’. There are extra
characters to type when using Vista, but the benefscribed below far outweigh this
cost.

Vista in ALE3D

ALE3D is a large parallel hydrodynamics code depetb at Lawrence Livermore
National Laboratory. Vista is currently being usedeplace the high-level mesh objects
in ALE3D. Thus far, all of the node centered dasad in ALE3D has been moved to
Vista. The node centered data is fully parallal] axists over many subsets. This data
represents about a third of all field data, and prasiously stored in C language structs.

ALE3D has seen a negligible performance impact foving to Vista. The
performance impact is small because ALE3D can ameogach database lookup over a
vector of calculations. We have tested the liroftshis by operating on vectors as small
as 64 values. In this case, we saw about a fifpegoent performance impact, however
this is good considering the database can stitigienized.

Converting ALE3D to Vista has required a large antaf work. The greatest effort
has been spent on maintaining backward compayiiiith existing data structures as we
transition to the new. The reference implementatd Vista offers some help here by
allowing users to register pointers to exiting dateuctures in the database. This
registration capability also makes it fairly easystipport legacy physics packages.

Keadler 3

Proceedings from the NECDC 2004
Restart Files

TransferView(Xfer *xfer, View *view) {

xfer->enterScope(view->name) ;

TransferindexSet (xfer, view->indexSet()) ; /I Transfer each
TransferFields (xfer, view->fields()) ; I/l major part of
TransferRelations (xfer, view->relations()) ; / the current
TransferParameters(xfer, view->parameters()) ; Il View.

/I Transfer all the children
for (View::Iter child(view->views()); !child.en d(); child.next())
TransferView(xfer, child.item()) ;

xfer->exitScope(“..”) ;

}

Figure 3. This figure contains 14 of the 218 linesf driver code needed to write a restart file.

The Vista algorithm used to dump a restart file destrates the dramatic advantage
to be gained by using a database in place of tbadit data structures. Fig. 3 shows how
a recursive procedure can be used to write a \iiegu t

The View tree contains many, but not all, of thepmafields, parameters, and
attributes used by ALE3D. The View tree as represkin the restart file is identical to
the View tree representation in memory which isiag#entical to the View tree used in
whiteboarding. The use of a database producesceadd consistency in the data model
which helps to simplify code development and anslys

The TransferView() routine in Fig. 3 accepts a datmsfer class (Xfer) as an
argument. The transfer class is an interface tolemsl database file formats. The data
Xfer operator for writing is defined by five methsjtlinctions:

e enterScope() — used to move into a new level gbesco

e arrayReal() — used to transfer an array of 64dat valued data.
e arrayint() — used to transfer an array of integead

e string() — used to transfer an array of characia.d

e exitScope() — used to move out of a level of sogpi

The simplicity of this interface makes it highlyrgable. It also allows ALE3D to
fully leverage tools that have been written for tiplé database file formats.

ALE3D currently supports four file formats: PDB, HB, XML, and XDMF. The
transfer class for each of these requires aboutté@dines, and each supports extensive
error checking and the ability to handle stridethda

Overall, it takes around 300 lines of code to wateomplete restart file using Vista.
This is a reasonably good improvement over the Qfplines of code used by many
large science codes.

Keader 4

Proceedings from the NECDC 2004

Network 1/O

ALE3D is exploring the use of Vista in place of tarrent communication data
structures. This is cutting edge development agllts look promising. We have
replaced a file containing 1500 lines of code waitbund 400 lines of code.

In the original algorithm, we allocated a comnuoation buffer then packed fields
member by member into the buffer. Next, we commated the buffer and unpacked
fields member by member. We did this for fifteefieslent communication modes, each
acting on different fields which were defined oddferent mesh subsets. Since the mesh
subsets were not in any way associated with the flaeta, there was a large amount of
brute force code to grab the appropriate subsefialudon a field by field basis as we did
the packing and unpacking.

In our new algorithm using the database, we canatisdbutes to mark fields that
need to be communicated. When we enter the conuaiom routine, we pass in an
attribute name for the communication we want tdqrer and query the database for all
fields having that attribute. Attribute queriesvlabeen optimized in the database to
return a vector of fields. We loop over the veabfields, pack the data, communicate
the data, and unpack the data into a vector ofivedgelds. Each database field is
implicitly associated with a subset, so this altjon is compact and almost trivial to
implement.

The new algorithm results in much cleaner and campade. ALE3D currently has
over ten source code files for communicating datavben domains. These files are used
for communicating element centered data, mateaakt data, mixed material data, etc.
Each of these files is loosely based on the sammpléte found in the first file we
converted. If all goes well, we should be ablesialace all of these files with a single file
containing the new methodology. This should gyer@tiuce code maintenance costs.

Future Work

We have demonstrated in this section how Vista wdok file and network 1/0. The
techniques described above should also be apmitatslide surfaces, user defined “edit”
variables, fine grained dynamic load balancing, pdigla mesh refinement, various
integration point schemes, and iterative convergeotemes.

Having a database will also allow us to easily gaoize our field data for cache
efficiency. Mowry [1] found that by merely changinthe memory layout used in the
VPENTA benchmark from the SPLASH suite, a factottoke increase in performance
was achieved. Likewise, Edwards [2] has at timeensaoticeable performance
improvement by rearranging field data containedhi@ SIERRA data registry. While
there is no guarantee similar modifications wiltrease performance for ALE3D, it's
something we were not able to even think aboutreefar data was stored in a database.

Keadler 5

Proceedings from the NECDC 2004

Vista in Diablo

Diablo is a parallel Fortran90 multi-mechanics codeveloped at Lawrence
Livermore National Laboratory. Vista currently légs Diablo’s restart capability. Vista
was chosen because it supports HDF5 and offers tiawpg for using the Vislt
visualization tool, which will be discussed below.

An added bonus of using Vista is its ability to terrestart files in a form closely
mirroring Diablo’s internal data structures and atsility to support new database file
formats with a very small amount of code.

Vista supports Diablo through a Fortran interfacehe interface assists in reading
data from a restart file and/or registering poisitéo Diablo’s data structures. The
interface also supports the ALE3D restart file eributine described in this paper.

Overall, the use of Vista in Diablo has been a ssgcbut there have been three
awkward areas, mostly arising from the Fortranriate:

e Memory allocation — Fortran90 memory allocatiom@e by Diablo, so Vista
has to point to Fortran90 data. This removes soinvésta’s flexibility.

e Array swapping — The Vista database has an intrirsray swapping
capability through the “depth” mechanism describddve. It is awkward to
access this functionality through the Fortran ifste®. This is one area that
can be improved in the future.

e Reading vs. initializing data is conceptually awkeva- The routine that
initializes the Vista database to point at Diab&sadstructures is only called
once during a code run. If the routine is callédimestep zero, it is only
responsible for allocating memory. If the routiaealled to read a restart file,
then it must query data from the restart file alldcate memory. This dual
use of code has dramatically shrunk the size of réstart code when
compared to other file formats, but on the othemch@ has also increased
conceptual complexity. We are currently lookingpinvays to simplify this
code model.

While Vista could benefit by improving its Fortranterface, it nonetheless has a
fairly good mechanism for interacting with legaoge.

Keadler 6

Proceedings from the NECDC 2004

Visualization

f‘l 20

|
¥ i
ey
]

Figure 4. Selected fields of a Vista restart filas plotted by the Vislt visualization tool.

Vista restart files can be viewed with the Visbitdeveloped by Lawrence Livermore
National Laboratory (Fig. 4), or by the ParaViewltdeveloped by Kitware.

Currently, Vislt supports the Vista database thloagspecialized plug-in that works
with single part or multi-part Vista restart file3he plug-in can display 2D quadrilateral
or 3D hexahedral meshes produced by ALE3D’s 2D3ndun modes. The plug-in can
also display the 3D meshes produced by Diablo.

Although the current Vislt plug-in is specializear fALE3D and Diablo restart files,
there is enough topological information embeddethiwiVista restart files to write a
generalized Vista plug-in A generalized plug-in would decrease or evemiefite the
need for interactions between code teams and vistialh teams, even when the code
team wants to change the form or contents of ttetiabase. It would also open the door
for code teams to be able to visualize arbitratyssts of their data, rather than only the
restrictive subset of data that a particular fdariat such as SILO will support.

ParaView is a public domain visualization tool sogpipd by several national
laboratories. Vista in ALE3D can write the XDMFrhoat supported by ParaView.
XDMF is a combination of HDF5 and XML. Due to Va& simplicity, it took about two
hours to write a driver to output ALE3D data foistformat.

L A small amount of additional meta-data must beiieel as attributes on Views in the database.

Keadler 7

Proceedings from the NECDC 2004
Debugging

-+ too 0O0B 0ODSHE vista

IBE-E]

Item - ,-|,;,,;,.-|n-|.-..|.m Bl Moardomain el em(24 62]
J
By besat fuvoio0, 0085 Sr-:wl yw— | Hige
[F 3 F|
vz fok | | et

i
D e [[w e EER s [T
ol 2453 1 0.00E53482 O.00E53452 fre=Fte] 4. Faq2 DAS2ES 40253
viakd 2443 | 0.00B70ESE 0.00EFCEEE 3103 5.0353 0.504 £4 3.5442
e] 1| 0.00851063 0.00E51063 Eliz 50053 D758BS RN
EllEs — o —— 2363 45533 D725 40283
+ aterial_z_z A6 1| 9.00E8475Y| O.00B3475 360 5.0053 0,504 41154
relation 2477 | 0.0OE70G2E| O.0OE7OEES 4 5151 051505 3.5008
- 2478 | 0.00ES9878 0.00E39575 13 5.12IEG E'.EJ_’ETEI 38281
. oo 1| 0.00BTSSES 0.00ETSE63 s o.ERE i A1)
= Fiakls = =l

o4 || 000000821 0.00900821

g 2507 || O.0OETEST| 0.OETESTT

. 250 1| 0.008024E5 0.00D024ES

Ll Lol 1 A enTenT '~-'--~—--.|--;7

Figure 5. The Vista data browser is interactive ad aware of topological relations between entities.

One of the major drawbacks of using a databaséautef traditional data structures
is debugging. Traditional debuggers support s@dita structures such as arrays and C
language structs. They do not contain built-inatalties to browse user defined run-
time dynamic data structures such as linked lisish tables, and of course, our database.

To solve this problem, we wrote a database brotes#r This tool was written using
the open source Qt GUI product distributed by Tech. This allowed us to have a
portable browser tool with minimal effort. At pesg, the tool can only be used to
browse files, but will soon be extended to coopevéth a variety of debuggers.

There are three windows displayed in Fig. 5. Thedaw on the left displays the
overall contents of the database. The windowls biar is labeled with a mesh descriptor
(the 58" time step of an eight domain problem). The uséecss fields in this window
for more detailed display.

The middle window in Fig. 5 is used to displayd®lin a database View. Here, the
user has selected thgrelative volume) andolo (reference volume) fields which reside
in thedomainl/elem View (as labeled in the title bar of the window$ince both fields
are in the same View, only one window is displaydthe user has also created a derived
variable,v*volo, which gives the total volume for each elementsulset mask is applied
showing only elements where the total volume isgmethan 0.0085. Note that element
2462 is highlighted in the middle window, and th@dow on the right in Fig. 5 contains
further information about this element.

The window on the right is thdomainl/node View for element 2462. This window
appears when an element is selected indimeainl/elem window because there is a
topological relationship registered in the databassociating each hexahedral element
with the eight nodes that define it. Note that tloelal integer identifiers for these eight
nodes are displayed in the window on the right.ewthat window initially pops up, only

Keadler 8

Proceedings from the NECDC 2004

those ids are displayed. The user must specificajuest which nodal fields they want
to examine via the “field” form entry box in thendow (here, X, y, Z were selected).

Note that all windows are real-time interactivEhe user can select a new element in
the middle window to instantaneously update thaitein the rightmost window.

No matter how clever the user, browsing this infation in a debugger using
traditional data structures takes a great effoldsing a browser tool that works in
conjunction with a debugger, it takes just a feigkd of a mouse. Since debugging can
involve a large amount of data browsing, it is efmsgee how the use of a database and a
browser tool should cut debugging time by an oodenagnitude.

Conclusion
Realmvs. . .
PUrpose Isolation Integration Storage
Physical IndexSet Relation Field
Conceptual View Attribute Parameter

Table 1 Vista contains all the features necessafgr analysis and synthesis of data.

When compared to traditional data structures, thstaVdatabase significantly
simplifies portions of code that require a largeoant of subset manipulation or data
movement. There are two key reasons for this:

e Topological relationships between database entiesan integral part of the
database specification. In fact, most of the lk@ycepts in Vista map directly
to subsetting capabilities (Table 1).

e All field data is stored in the database, rathentfust a portion, making it
possible to apply general transformations to datia fairly small algorithms.

As this paper has shown, using a database has adsantages. The consistent data
layout provided by a database allows the programmerrite generic algorithms in a few
hundred lines of code that can replace thousandsaditional lines of code. The look-
and-feel of the database in the source code isergtdifferent from the look-and-feel of
C language structs, making the database easyrtoded use by non computer scientists.
There is an end-to-end consistency in the data hamiess the white board, the internal
data structures, the restart files, the visualwatool, and the debugger tool. Debugging
may be simplified by an order of magnitude duertbanced interactivity. Complexity is
reduced because there are fewer lines of code, fdata structures to remember, and
fewer data models to remember. There also tendsetocreased flexibility in data
intensive algorithms, which are typical of compugeience centric code.

Keadler 9

Proceedings from the NECDC 2004
Acknowledgements

The work presented in this paper is a formal ozgtion of code work done by a
large group of people. | would like to thank Eddvauke, Albert Nichols Ill, Rob Neely,
lvan Otero, Dan Malmer, Mark Miller, Shawn Dawsaranany others for the countless
hours of discussion, real world work, and experitagon that lead to the definition and
implementation of Vista.

This work was performed under the auspices of tt& Dept. of Energy by the
University of California, Lawrence Livermore Nat@r_aboratory, P.O. Box 808,
Livermore, CA 94551 under contract No. W-7405-E183-4

References

Mowry, Todd, “Tolerating Latency Through Softwarei@rolled Data PrefetchingPhD
Dissertation, Stanford University, March 1994.

Edwards, H. Carter, Sandia National Laboratory,ugjli,erque, New Mexico, private
communication (2004).

Edwards, H. Carter, “SIERRA Framework Version 3r&€8ervices Theory and Design,”
Sandia National Laboratory, Albuquerque, New Mext8BAND REPORT
SAND2002-3616.

Luke, Edward, “A Rule-Based Specification SystemG@omputational Fluid Dynamics,”
PhD Dissertation, Mississippi State University, Decemb@99.

Gerlach, Jens, “Domain Engineering and Genericfaroming for Parallel Scientific
Computing”, PhD Dissertation, TU Berlin, July 2002.

Keadler 10

